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Abstract
In this paper we investigate the properties of nodal structures in random wave
fields, and in particular we scrutinize their recently proposed connection with
short-range percolation models. We propose a measure which shows the
difference between monochromatic random waves, which are characterized
by long-range correlations, and Gaussian fields with short-range correlations,
which are naturally assumed to be better modelled by percolation theory. We
also study the relevance of the quantities which we compute to the probability
that nodal lines are in the vicinity of a given reference line.

PACS numbers: 05.45.−a, 05.40.−a, 03.65.w

1. Introduction

The nodal domains of a (real) wavefunction are regions of equal sign, and are bounded by the
nodal lines where the wavefunction vanishes. Even a superficial look at the nodal domains
of a quantum wavefunction reveals the separable or chaotic nature of the quantum system
[1]. In separable systems, one observes a grid of intersecting nodal lines, and consequently a
checkerboard-like nodal domain pattern. In (quantum) chaotic systems, on the other hand, the
nodal domains form a highly disordered structure, resembling the geometry found in critical
percolation. Blum et al [2] argued that also the statistics of the number of nodal domains reflects
the fundamental difference between separable and chaotic quantum systems. Bogomolny and
Schmit [3] conjectured that the nodal domain statistics of chaotic wavefunctions in two
dimensions can be deduced from the theory of critical percolation. They built a percolation
model for the nodal domains which allowed them to calculate exactly the distribution of

3 Present address: Institut für Theoretische Physik, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1,
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numbers of domains. Its predictions have been confirmed numerically as far as nodal counting
and the area distribution of nodal domains are concerned. While quantum wavefunctions
display long-range correlations, the critical percolation model assumes that such correlations
can be neglected on distances of the order of a wave length. One may thus expect that some
nodal properties in real wavefunctions are not well described by critical percolation. The main
motivation of the present study was to investigate the limits of applicability of the short-range
percolation model. The object we will address is related to the distribution of shapes of
nodal lines in the random wave ensemble. To be precise, we will calculate approximately the
probability, that a nodal line matches a given reference line up to a given precision ε.

We will examine the statistics of nodal lines within the monochromatic random wave
model, which is a good description of the eigenfunctions of a quantum billiard in the
semiclassical limit [4]. The monochromatic random wave ensemble consists of solutions
of the Helmholtz wave equation for a fixed energy E = k2

−∇2� = k2�. (1)

Furthermore the random function � is picked up from a Gaussian distribution, i.e. higher
order correlations of � can be expressed through the two-point correlation function G1(r) =
〈�(r)�(r′)〉 by virtue of Wick’s theorem. A convenient representation of � is given by the
superposition of cylindrical waves with Gaussian distributed amplitudes

�(r, θ) =
∑
m

AmJm(kr) exp(imθ) (2)

where Jm(x) are the Bessel functions of the first kind, and r, θ is the position in polar
coordinates. The Gaussian random variables obey A∗

m = (−1)mAm to render � real, and have
correlations 〈A∗

mAm̄〉 = δm,m̄, m, m̄ � 0. Using the addition theorem for the Bessel functions,
one finds for the two-point correlation function

G1(r) = 〈�(r)�(r′)〉 = J0(k|r − r′|) ∼ cos(k|r′ − r| − π/4)√
k|r′ − r| . (3)

It displays in fact long-range correlations, which decay with a power law. In order to access
the relevance of the long-range correlations, we compare the monochromatic random wave
ensemble with another Gaussian ensemble of random functions, which, however, does not
have long-range correlations, and is characterized by the correlation function

G0(r) = exp(−k2r2/4). (4)

For the latter ensemble the applicability of the critical (short-range) percolation picture is
evident [5, 6], since the sign of the random function is not significantly correlated for distances
r � k−1. Figure 1 shows the spatial correlation functions G0,G1.

We now briefly introduce the central object of this paper. A detailed derivation will be
given in section 2. Consider a smooth, closed reference curve r(s) in the plane, which is
parametrized by its arclength s. The integral of the square of the amplitude of a random
function �(r) along this curve

X = 1

2

∫
ds �(r(s))2 (5)

is itself a random variable. It samples the function not only at a discrete set of points, but
along a one-dimensional subset of the plane. It should be well suited to detect the long-range
correlations of the random field �.

Now assume that � has a nodal line very close to the given reference line. Then X
will be small in a sense which will be explained later. Thus, by calculating the distribution
of X, its cumulants or moments, one obtains the relative importance of the given reference



Morphology of nodal lines 11365

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

Figure 1. The spatial correlation functions G1 (solid) and G0 (dotted) as a function of kr .

line r(s). We will perform these computations for a circular reference line both for the
random wave ensemble and for the short-range ensemble defined above. We will study in
particular the scaling properties of the cumulants of X as functions of the radius (typical
size) of the reference curve. We shall show that they obey a scaling law which distinguishes
clearly between the short-range ensemble and the monochromatic random wave ensemble. To
understand the significance of these cumulants, we shall consider an approximate expression
for the probability that a nodal line is found inside a strip of width ε about the reference line.
We shall show that this function when expanded in powers of ε−1 generates the X cumulants.
Its scaling properties with the size parameters, however, are less sensitive to the correlations
assumed for the underlying random functions model. Strictly speaking, the function we
compute is a measure of the intensity of fluctuations of the field � along the line, which are
certainly small when a nodal line approximates the reference line, but can also be small if
different nodal lines which just avoid crossing, are within ε from the reference line. Since
near avoided crossings have low probability (see [7]) we believe that the function we compute
is closely related to the true probability.

The rest of the paper is organized in the following way. The next section describes in
detail the new concept which we introduce to the morphological study of nodal lines, that is,
the density of line shapes. Once this is done, a formal expression for the density, expressed
in terms of X is provided, and computed explicitly for particular shapes—circles (section 3)
within a reasonable and calculable approximation. These densities are evaluated for random
waves, and for the short-range ensemble.

2. The density of nodal line shapes

We consider two-dimensional, Gaussian random fields, and a prescribed (closed) reference
line. We shall propose a proper definition of the density of nodal lines which match the
reference line in a random field (or equivalently, the probability that a nodal line with a
prescribed form shows up in a Guassian random field). Compared to problems, where the
density of (critical, nodal) points of a Gaussian field is calculated [8–11], we enter here a new
dimension and consider the density of one-dimensional strings instead of zero-dimensional,
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Figure 2. A section of the nodal set of a random wavefunction. One of its nodal lines lies within
the prescribed thin circular tube, i.e. this configuration contributes to the density ρ.

point-like objects. In order to obtain a well-defined and finite theory, we have to regularize
the theory by dilating the reference curve to a thin tube with constant thickness d and compute
the probability, that a nodal line is completely inside this tube—see figure 2. Assume now
that a function �(r) has a nodal line close to a reference curve r(s), where s denotes the
arclength. The normal distance η(s) of the nodal line from the reference curve can be obtained
via linearization

�(r + ηn) ≈ η∂n�(r) + �(r) = 0 (6)

yielding

η = − �(r)

∂n�(r)
. (7)

The unit vector n(s) is normal to the curve r(s). ∂n denotes the corresponding normal
derivative. The probability that a nodal line lies in a sharp tube |η(s)| < d is, although
well defined, not accessible by analytical means. At this point we must resort to further
approximations, which will eventually lead us to a tractable model, at the cost of losing the
rigour of the original object defined above. As a first step we replace the box-shaped cross
section by a smooth Gaussian and consider instead the expectation value

Pε =
〈
exp

(
− 1

2ε

∫
ds η2

)〉
(8)

where
∫

ds is the line integral along the reference line, and ε ∼ d3. However, even the
computation of this quantity poses unsurmountable difficulties. η = φ/∂nφ is a ratio of two
(in general non-independent) Gaussian variables, which is itself non-Gaussian. In order to
obtain a tractable expression we approximate the integral w = ∫

ds η2 by a mean-field-type
expression

wm =
∫

ds
�2

〈(∂n�)2〉 =
∫

ds
�2

〈(∇�)2〉/2
(9)
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where the latter step requires isotropy of the distribution of the random field �. The final
approximation for the shape probability now reads

Pε =
〈
exp

(
−1

ε

∫
ds

�2

〈(∇�)2〉
)〉

= det

(
1 +

B̂

ε〈(∇�)2)〉/2

)−1/2

(10)

or

F(ε) ≡ log Pε = −1

2

∑
µ

log

(
1 +

βµ

ε〈(∇�)2)〉/2

)
(11)

where B̂ is an integral operator with (symmetric) kernel

B(s, s ′) = 〈�(r(s))�(r(s ′)〉 = G(|r(s) − r(s ′)|) (12)

and βµ are the corresponding eigenvalues. The operator B̂ is the correlation function of
the field �, restricted to the given curve. It is positive semi-definite and has a finite trace∫

dsB(s, s) = L, thus its eigenvalues βµ � 0 have an accumulation point at zero. The
final expression for the logarithm of probability (11) is the starting point of our investigation.
It should reflect the relevant features of the inaccessible hard-tube probability, and is an
interesting object in its own right4. It takes into consideration the random field � along
the whole reference curve r(s). We remark here again that the final approximation for the
probability only tests whether � is small along the given curve—it is not able to resolve nearly
avoided intersections which are placed next to the reference curve.

F(ε) is the generating function for the cumulants of the random variable X =
(1/2)

∫
ds �2

F(ε) = log〈exp(−ε̃−1X)〉 =
∑

ν=1,2,3...

1

ν!
(−1)ν ε̃−ν〈Xν〉c (13)

where the expansion parameter is ε̃ = ε〈(∇�)2〉/2. It is also the generating function of the
traces of powers of the operator B̂. In fact, expanding F(ε) in terms of ε̃, i.e. for large ε̃−1,
one finds

F(ε) = −1

2

∑
m

log(1 + ε̃−1βm) =
∑

ν=1,2,3...

1

2ν
(−1)ν ε̃−ν

∑
m

(βm)ν. (14)

Comparing the two expansions, we see that

〈Xν〉c = ν!

2ν

∑
m

(βm)ν. (15)

As mentioned in the introduction our goal is to compare two different Gaussian
random fields in two dimensions with correlation functions 〈�(r)�(0)〉 = G(r) =∫

d2p G̃(p) exp(ip · r), namely

G1(r) = J0(kr) G0(r) = exp(−k2r2/4). (16)

G1 is the correlation function of the monochromatic random wave ensemble with a sharply
defined energy k2. Consequently, it displays long-range correlations. G0 is a typical short-
range ensemble. Note that the G̃ are normalized such that

G(0) = 〈�2〉 =
∫

d2p G̃(p) = 1

−∇2G(0) = 〈(∇�)2〉 =
∫

d2p p2G̃(p) = k2.

(17)

This implies an equal nodal line density 〈|∇�|δ(�)〉 for the long, and short-range ensemble.

4 Private communication with J Hannay.
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Figure 3. The spectrum of B̂ as a function of the order m for kR = 100. Shown is the random
wave case (symbol +), and the short-range case (points are connected to a dotted line).

3. The density of circular nodal lines

We consider now the approximate probability (10) for circles with radius R. The kernel of the
operator B̂ reads for the monochromatic random wave ensemble with correlation function G1

B(θ − θ ′) = J0

(
2kR sin

(
θ − θ ′

2

))
(18)

where θ, θ ′ are angles describing positions on the circle. Owing to the rotational invariance
of the problem, the eigenfunctions of B̂ are exp(imθ),m = 0,±1,±2, . . . . The eigenvalues
of the integral operator are therefore

βm = R

∫ 2π

0
dθ J0(2kR sin(θ/2)) exp(imθ)

= 2πR(Jm(kR))2. (19)

The eigenvalues for the short-range ensemble read

βm = 2πR exp(−k2R2/2)Im(k2R2/2) ≈ 2
√

π

k
exp

(
− m2

(kR)2

)
. (20)

Figure 3 shows the eigenvalues of B̂ for a circle with radius kR = 100. The spectrum for the
random waves has strong fluctuations, whereas the spectrum for the short-range ensemble is a
smooth (almost) Gaussian. It was mentioned before that the trace obeys

∑
m βm = L for both

the short- and the long-range ensemble.

4. The random wave case

We calculate now F(ε) = log Pε and its large-ε expansion for large radii R � 1/k. In the
region m < kR for large kR the Bessel functions are well approximated by (see [12])

Jm(m sec β) ≈
(

2

πm tan β

)1/2

cos(m tan β − mβ − π/4). (21)
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Figure 4. The scaling function f (x) for kR = 50 (red +), kR = 100 (green ×) and for kR = 200
(blue∗).

By setting m sec β = kR, we obtain

Jm(kR) ≈ (2/π)1/2((kR)2 − m2)−1/4 cos(
√

(kR)2 − m2 − m arccos(m/(kR)) − π/4). (22)

In the transition region m ≈ kR, we approximate the Bessel function Jm(kR) in terms of an
Airy function Ai(x) (see [12])

Jm(kR) ≈
(

2

kR

)1/3

Ai

((
2

kR

)1/3

(m − kR)

)
. (23)

We can combine both asymptotic expansions into a scaling law with a universal scaling
function f (x)

|Jm(kR)| ∼ (kR)−1/3f

(
m2 − (kR)2

(kR)4/3

)
. (24)

Figure 4 shows that the scaling functions f (x) collapse well for three different values of
kR = 50, 100, 200. Note that for negative arguments the scaling function f (x) is strongly
fluctuating. In the subsequent applications, f (x) and its powers will be integrated over, and
for this purpose, f (x) for x < 0 can be considered as a stochastic function. f (x) vanishes
exponentially for x → +∞, f (0) = (2/9)1/3/�(2/3) = 0.447 31, and f (x) ∼ (−x)−1/4 for
x → −∞. The eigenvalues of the operator scale according to

βm = 2π

k
(kR)1/3

(
f

(
m2 − (kR)2

(kR)4/3

))2

. (25)

The leading behaviour of the νth cumulant of X which is proportional to the trace of the νth
power of B̂, as a function of the radius R reads

2ν

ν!
〈Xν〉c =

∑
m

(βm)ν ∼ k−ν(kR)1+ν/3
∫ ∞

0
dt (f ((t2 − 1)(kR)2/3))2ν . (26)

We find to leading order in kR

〈Xν〉c ∼ k−ν ×




kR ν < 2

kR log(kR) ν = 2

(kR)(1+ν)/3 ν > 2.

(27)
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Figure 5. Log–log plot of the third cumulant 〈X3〉c as a function of the radius 10 < kR < 200 for
the random wave case.

This scaling behaviour is compared with the corresponding quantity for the short-range
correlations, where

〈Xν〉c ∼ k−νkR (28)

for all ν > 0. Some remarks are in order. The cumulants 〈Xν〉c show a typical critical
behaviour for the random wave case. Below the critical power ν∗ = 2, the large kR-scaling
does not differ from the short-range case. At the critical power, logarithmic deviations show
up, and above ν∗, the cumulant 〈Xν〉c displays an anomalous scaling in kR, different from the
non-critical, short-range ensemble. Now we return to the shape probability

log Pε ≈ −(kR)

∫ ∞

0
dt log(1 + ω−1(kR)1/3(f ((t2 − 1)(kR)2/3))2) (29)

where ω = εk3/(4π) is the dimensionless width of the tube around the (here circular)
reference curve. The limit of small ω corresponds to the cumulant (26) for ν ↘ 0 as far
as the scaling behaviour is concerned. Therefore, log Pε cannot be considered as a ‘good’
quantity to distinguish between the long-range and the short-range cases—for both ensembles,
log Pε ∼ kR. There might be anomalous higher order corrections in the random wave case,
which are not considered here. On the other hand, a large-ε expansion (which means arbitrarily
wide tubes) yields the sequence of cumulants (26) for integer ν which in fact have characteristic
scaling properties for ν � 2. Figure 5 shows a log–log plot of the third cumulant (ν = 3)

as a function of the radius kR for 10 < kR < 200. The slope is 1.340 63 (standard error =
0.065%), i.e. confirms the predicted exponent 4/3.

5. Conclusion

In this paper we compared monochromatic Gaussian random waves and a short-range ensemble
of random fields by investigating the statistics of (1/2)

∫
ds �2 along a given reference curve.

The νth order cumulants of this random variable obey non-trivial scaling laws with respect to
the linear size of the reference curve (here circles of radius R) in case of the long-range random
waves. The second-order cumulant shows logarithmic deviations from the corresponding
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scaling behaviour of the short-range ensemble. The cumulants of order three and higher have
non-trivial exponents. Namely, these cumulants scale like R(1+ν)/3, whereas the cumulants for
the short-range ensemble scale ∼R. The probability that a nodal line lies in a circular tube of
given thickness ε, however, turned out to be a less useful candidate to probe the long-range
properties of the random functions. The logarithm of the shape probability for the short- and
the long-range case scales in exactly the same manner, which might explain the success of the
ad hoc model [3].
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